Mass spectrometry-based thermal shift assay for protein-ligand binding analysis.
نویسندگان
چکیده
Described here is a mass spectrometry-based screening assay for the detection of protein-ligand binding interactions in multicomponent protein mixtures. The assay utilizes an oxidation labeling protocol that involves using hydrogen peroxide to selectively oxidize methionine residues in proteins in order to probe the solvent accessibility of these residues as a function of temperature. The extent to which methionine residues in a protein are oxidized after specified reaction times at a range of temperatures is determined in a MALDI analysis of the intact proteins and/or an LC-MS analysis of tryptic peptide fragments generated after the oxidation reaction is quenched. Ultimately, the mass spectral data is used to construct thermal denaturation curves for the detected proteins. In this proof-of-principle work, the protocol is applied to a four-protein model mixture comprised of ubiquitin, ribonuclease A (RNaseA), cyclophilin A (CypA), and bovine carbonic anhydrase II (BCAII). The new protocol's ability to detect protein-ligand binding interactions by comparing thermal denaturation data obtained in the absence and in the presence of ligand is demonstrated using cyclosporin A (CsA) as a test ligand. The known binding interaction between CsA and CypA was detected using both the MALDI- and LC-MS-based readouts described here.
منابع مشابه
Introduction to the TPP package for analyzing Thermal Proteome Profiling data: 2D-TPP experiments
Thermal Proteome Profiling (TPP) combines the cellular thermal shift assay concept [1] with mass spectrometry based proteome-wide protein quantitation [2]. Thereby, drug-target interactions can be inferred from changes in the thermal stability of a protein upon drug binding, or upon downstream cellular regulatory events, in an unbiased manner. The package TPP facilitates this process by providi...
متن کاملMethods for protein characterization by mass spectrometry, thermal shift (ThermoFluor) assay, and multiangle or static light scattering.
Mass spectrometry (MS) is widely used within structural and functional proteomics for a variety of tasks including protein quality assessment, identification, and characterization. MS is used routinely for the determination of the total mass of proteins, including N-glycosylated proteins, analysis of selenomethionine incorporation, crystal content verification, and analysis of N-glycosylation s...
متن کاملHigh-Throughput Interrogation of Ligand Binding Mode Using a Fluorescence-Based Assay**
Probing the pocket: A high-throughput fluorescence-based thermal shift (FTS) assay utilized different forms of a protein (in gray) to establish the binding mode of a ligand (see picture). The assay serves in the rapid evaluation of structure-activity binding-mode relationships for a series of ligands of Plk1, an important target of anticancer therapy.
متن کاملQuantifying labile protein-ligand interactions using electrospray ionization mass spectrometry.
A new electrospray ionization mass spectrometry (ES-MS) approach for quantifying protein-ligand complexes that are prone to in-source (gas-phase) dissociation is described. The method, referred to here as the reference ligand ES-MS method, is based on the direct ES-MS assay and competitive ligand binding. A reference ligand (L(ref)), which binds specifically to the protein (P), at the same bind...
متن کاملMeasurement of Nanomolar Dissociation Constants by Titration Calorimetry and Thermal Shift Assay – Radicicol Binding to Hsp90 and Ethoxzolamide Binding to CAII
The analysis of tight protein-ligand binding reactions by isothermal titration calorimetry (ITC) and thermal shift assay (TSA) is presented. The binding of radicicol to the N-terminal domain of human heat shock protein 90 (Hsp90alphaN) and the binding of ethoxzolamide to human carbonic anhydrase (hCAII) were too strong to be measured accurately by direct ITC titration and therefore were measure...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Analytical chemistry
دوره 82 13 شماره
صفحات -
تاریخ انتشار 2010